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ABSTRACT 

Introduction: Recent cohort studies use exposure prediction models to estimate the 

association between long-term residential concentrations of PM2.5 and health. Because these 

prediction models rely on PM2.5 monitoring data, predictions for times before extensive 

spatial monitoring present a challenge to understanding long-term exposure effects. The U.S. 

Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for 

PM2.5 was established in 1999.  

Objectives: We evaluated a novel statistical approach to produce high quality exposure 

predictions from 1980-2010 in the continental U.S. for epidemiological applications. 

Methods: We developed spatio-temporal prediction models using geographic predictors and 

annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 

1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) 

PM2.5 sulfate data in the Clean Air Status and Trends Network, and c) visibility data across 

the Weather-Bureau-Army-Navy network. We validated the models using PM2.5 data 

collected before 1999 from IMPROVE, California Air Resources Board dichotomous 

sampler monitoring (CARB dichot), the Children’s Health Study (CHS), and the Inhalable 

Particulate Network (IPN). 

Results: In our validation using pre-1999 data, the prediction model performed well across 

three trend estimation approaches when validated using IMPROVE and CHS data (R2=0.84–

0.91) with lower R2s in early years. Model performance using CARB dichot and IPN data 

was worse (0.00–0.85) most likely due to smaller numbers of monitoring sites and 

inconsistent sampling methods. 

Conclusions: Our prediction modeling approach will allow health effects estimation 

associated with long-term exposures to PM2.5 over extended time periods of up to 30 years.  
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INTRODUCTION 

 Many cohort studies of the long-term effects of fine particulate matter (PM2.5) air 

pollution on health have used exposure prediction models to estimate individual-level long-

term concentrations at cohort residences (e.g., Eeftens et al. 2012; Paciorek et al. 2009; Puett 

et al. 2009; Beelen et al. 2014; Sampson et al. 2013; Young et al. 2014). These exposure 

prediction models rely on PM2.5 monitoring data collected from spatially-distributed 

monitoring networks. PM2.5 predictions are generally infeasible for times before 

comprehensive spatial monitoring began in the late 1990s or 2000s depending on the 

countries. However, many cohorts were enrolled before these extensive monitoring networks 

began operating. Many studies thus use PM2.5 estimates based on monitoring data from later 

time periods than cohort follow-up for their health analyses (e.g., Beelen et al. 2008; Cesaroni 

et al. 2013; Weichenthal et al. 2014). This temporal misalignment of PM2.5 predictions with 

health data could affect study results.  

Other studies have developed historical prediction models to temporally align 

exposure estimates with health outcomes. They used back-extrapolation, historically 

available large-size particle data, or physical or chemical models complemented by visibility, 

emission, meteorology, and satellite data (Beelen et al. 2014; Brauer et al. 2012; Hogrefe et 

al. 2009; Hystad et al. 2012; Lall et al. 2004; Molnar et al. 2015; Ozkaynak et al. 1985; 

Paciorek et al. 2009; Yanosky et al. 2009). However, most these studies estimated historical 

PM2.5 concentrations in limited areas and/or for relatively short time periods. Furthermore, 

the model evaluation for the period prior to extensive monitoring was restricted to small 

datasets or poorly reported. 

In the U.S., many populations of great value for assessment of PM2.5 health effects 

collected data well before 1999, when reliable long-term regulatory monitoring data for PM2.5 

began to be available. We aimed to develop a national prediction model to estimate annual 
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average concentrations of PM2.5 in the continental U.S. for the entire time period between 

1980 through 2010. We evaluated our historical predictions from 1980 through 1998 using 

available external validation datasets and investigated residential historical predictions using 

a multi-city cohort. 

METHODS 

PM2.5 data 

We obtained daily PM2.5 concentrations collected in the two national PM2.5 

monitoring networks: Environmental Protection Agency (EPA) Federal Reference Method 

(FRM) and Interagency Monitoring of Protected Visual Environment (IMPROVE) networks. 

Whereas FRM sites were located mostly in urban areas to monitor population-level PM2.5 

concentrations, IMPROVE sites were established to monitor visibility and located mostly in 

wilderness areas and national parks (Hand 2011; U.S. EPA 2004a). We downloaded all 

available data from FRM sites from 1999 through 2010 and IMPROVE sites from 1990 

through 2010 from the EPA Air Quality database (U.S. EPA 2014). We computed annual 

averages of PM2.5 for each site that met minimum inclusion criteria of at least two-thirds 

complete data points for any year (with exact numbers dependent on the sampling schedule) 

and less than 45 consecutive missing days of sampling. We used the PM2.5 data collected in 

FRM and IMPROVE for 1999-2010 for model development including temporal trend 

estimation, whereas we reserved the IMPROVE data from 1990-1998 for model validation. 

We categorized all monitoring sites into three regions: East, Mountain West, and West Coast 

(Figure 1). 

In order to estimate temporal trends for the entire 1980 through 2010 time period, 

including all years without FRM PM2.5 measurements, we obtained two additional sources of 

data: annual average concentrations of PM2.5 sulfate measured in the Clean Air Status and 

Trends Network (CASTNet) from 1987 through 2010 (U.S. EPA 2013) and daily noon-time 
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visual ranges, as a measure of visibility, monitored in the Weather-Bureau-Army-Navy 

(WBAN) network from 1980 through 2010. Because most visibility measurements collected 

by optical instruments had maximum of 16.093 km (10 miles) and these instruments replaced 

measurements taken by the human eye in 1990s (U.S. EPA 2005), we truncated all 

measurements to a maximum 16.093 km distance. We computed annual averages of visibility 

after excluding days with heavy fog, dust, and precipitation, and after applying the same 

inclusion criteria as for PM2.5 data.  

For model evaluation in years prior to 1999, we obtained PM2.5 data from three 

different networks in addition to IMPROVE: the Southern California Children’s Health Study 

(CHS) for 1988-2001 (Peters et al. 2004), the California Air Resources Board dichotomous 

sampler monitoring (CARB dichot) for 1994-2003 in California (Blanchard et al. 2011), and 

the Inhalable Particulate Network (IPN) for 1979-1982 over the continental U.S (U.S. EPA 

1985). CHS PM2.5 data collected using two-week samplers were converted to FRM-

equivalent PM2.5 for computing annual averages (Peters et al. 2004). Likewise, for the CARB 

dichot data we adopted a published conversion equation to estimate FRM-equivalent PM2.5 

(Blanchard et al. 2011). We applied the same inclusion criteria to compute annual averages to 

sites in the three model evaluation networks. These criteria reduced the number of IPN sites 

from 102 for 1979-1982 to 16 for 1980-1981, whereas the other three networks gave same or 

consistent numbers of sites. 

Geographic variables and geocoding 

We considered more than 800 variables representing geographic characteristics 

including traffic, land use, emission, elevation, and vegetation index (Supplemental Material, 

Table S1). Computation of these variables at each of PM2.5 monitoring sites was implemented 

in ArcGIS 10.2. For land use characteristics, we used data collected in different time periods 

to incorporate time-varying spatial features into the model: land cover data from the 1970s 
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and 1980s, and satellite land use imaginary data generated in 2006. Our final list of 

geographic variables was pruned to about 300 variables after we eliminated the less 

informative variables with little variability. To illustrate our predictions over time, we 

geocoded residential addresses of 7,552 participants in the Multi-Ethnic Study of 

Atherosclerosis (MESA) (Bild et al. 2002) and associated MESA Air project (Kaufman et al. 

2012). These participants provided historical residential addresses dating back to 1980. In 

addition, we generated coordinates of 12,501 points on a 25 kilometer grid across the 

continental U.S. 

Development of the PM2.5 model for 1980-2010 

The PM2.5 model for the period of 1980-2010 was developed based on the framework 

of the PM2.5 spatio-temporal prediction model in MESA Air (Keller et al. 2015; Lindstrom et 

al. 2014; Sampson et al. 2011; Szpiro et al. 2010). To briefly summarize, the MESA Air 

spatio-temporal prediction model analyzed 2-week averages of PM2.5 as a function of a 

spatially varying long-term mean, spatially varying temporal trends, and spatio-temporal 

residuals. The spatially varying temporal trends were composed of spatially-varying trend 

coefficients and trend basis functions. The trend basis functions were estimated from singular 

value decomposition of the data from sites with long time series (Fuentes et al. 2006). The 

spatially-varying long-term mean and trend coefficients were estimated using universal 

kriging, which integrates geographic predictors and spatial smoothing (Banerjee et al. 2003). 

Prior to regression modeling, we used partial least squares (PLS) to reduce the dimension of 

the hundreds of geographic variables to a limited number of derived predictors that are the 

linear combinations that maximize their covariance with PM2.5. The spatial dependence 

structure in the kriging model for the long-term mean was assumed to be exponential and was 

parameterized by three components: the range, partial sill, and nugget. The spatially-

dependent and temporally-independent spatio-temporal residuals were modeled by using 
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simple kriging. Whereas the MESA Air model was based on 2-week averages, in this work 

we modeled the log annual average PM2.5 concentrations from 1999 through 2010. For the 

trend estimation, we considered only sites with more than six years of monitoring out of the 

twelve possible years. To avoid unnecessary complexity in the model, we assumed a single 

temporal trend, no spatial structure for the trend coefficient (zero range and partial sill), and 

two PLS predictors. We examined alternative modeling choices including a spatial structure 

for the trend coefficient and interaction terms by three regions. 

 We explored various approaches to estimate the temporal trend before 1999. These 

included the backward extrapolation of the temporal trend basis function estimated from the 

1999-2010 FRM PM2.5 data, and estimation of the temporal trend using other sources of data 

such as emission, meteorological variables, visibility, and PM2.5 sulfate; all these other 

measurements have been shown to be associated with PM2.5 in previous studies (Hand et al. 

2014; Malm et al. 2002; Ozkanak et al. 1985). Ultimately we selected three approaches for 

in-depth evaluation of the historical trend estimation: 1) extrapolation of the linear trend 

estimated based on the PM2.5 data in FRM and IMPROVE for 1999-2010, 2) estimation of 

the trend using the PM2.5 sulfate data in CASTNet for 1987-2010 and extrapolation for 1980-

1986, and 3) estimation of the trend using the visibility data in WBAN for 1980-2010. We 

also examined alternative approaches, including combining two data sources into one 

temporal trend, estimating two temporal trends, and replacing the trend by meteorological 

variables as spatio-temporal covariates. 

To evaluate our model for 1999-2010, we performed 5-fold cross-validation and 

computed root mean square error (RMSE) and MSE-based R-square (R2) statistics for annual 

averages (Keller et al. 2015). The MSE-based R2 was computed by subtracting from 1 the 

ratio of the MSE to the variance of the data. This evaluates predictions compared to 

observations about the identity line. In contrast, traditional regression-based R2, the squared 



Environ Health Perspect DOI: 10.1289/EHP131 
Advance Publication: Not Copyedited 

 

9 
 

correlation coefficient, compares predictions to observations about a regression line; this can 

result in overestimation of prediction ability. We presented cross-validation statistics for each 

year and all twelve years combined for all sites, and for all twelve years combined within 

each of the three regions. In addition to spatial performance, we examined temporal 

performance by using the median of cross-validation statistics at each site where there are 

more than 6 years of data. To aid in assessing bias, we have also provided slopes and 

intercepts from the regression of cross-validated predictions on observations. 

Model evaluation for the pre-1999 period 

 We externally validated the model using four distinct PM2.5 datasets, all sampled 

before 1999: 1) IMPROVE data for 1990-1998, 2) CARB dichot data for 1988-2001, 3) CHS 

data for 1994-2003, and 4) IPN data for 1980-1981 (Table 1). We predicted annual averages 

of PM2.5 concentrations at monitoring sites in each of the four monitoring networks and 

computed out-of-sample RMSEs and MSE-based R2s using these external data sources for all 

years and regions as well as by year and region. We also estimated intercepts and slopes of 

the best-fit lines. 

Predictions  

We created maps of PM2.5 predictions on a 25 km grid over the contiguous U.S. in 

1980, 1990, 2000, and 2010 to examine spatially-varying changes of PM2.5 concentrations 

over time. We also selected 10 grid coordinates with the highest populations in each of the 

three regions and explored the trends of predictions over 31 years.  

In addition, we conducted some analyses to provide information on the degree to 

which exposure estimation based on data from the year 2000 reflects concentrations predicted 

by our approach in the earlier period. In order to investigate the sensitivity of temporally- and 

spatially-varying individual exposures that incorporate changes in people’s residences over 

time, we predicted PM2.5 concentrations at all home addresses from 1980 through 2000, the 
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year of the baseline exam, among members of the MESA/MESA Air cohort and computed a 

21-year average weighted by residence times across historical addresses for each participant. 

These predictions were compared to annual averages estimated for the same participants in 

2000, the year of the baseline exam. We stratified this comparison by the 5,086 who did not 

move during 1980-2000 (“non-movers”) and 2,466 people who moved at least once. 

RESULTS 

 Means of PM2.5 annual averages for 1999-2010 in FRM and IMPROVE were 12.03 

(SD=3.23) and 5.44 (2.94) µg/m3, respectively (Table 1). The number of monitoring sites was 

small in 1999 compared to 2000-2010 (Supplemental Material, Figure S1) and most sites for 

1999-2010 were located in the East region (Figure 1). Annual average concentrations of 

PM2.5 decreased over time from 1999 through 2010, particularly in the East and West Coast 

regions (Supplemental Material, Figure S2). Figure 2 displays the estimated temporal trends 

from 1980 through 2010 using the three trend estimation approaches described earlier. 

Whereas the extrapolated trend based on the PM2.5 data was linear, the trends estimated using 

PM2.5 sulfate and visibility measurements had different rates of decrease in different time 

periods with approximate linearity over time.  

In the model evaluation for 1999-2010, cross-validated R2s for all twelve years 

combined and each single year were high, varying between 0.77 and 0.87 across the three 

trend estimation approaches (Supplemental Material, Tables S2-S3). Temporally-

characterized R2s at each site over years were lower (0.55-0.58) than spatially-characterized 

R2s in each year across sites, possibly because of relatively small temporal variability for 

twelve years compared to large spatial variability across U.S.. The cross-validation statistics 

of alternative modeling approaches in the sensitivity analyses were consistent with (and no 

better than) or poorer than those of our primary approach shown in Table S2 (data not 

shown). 
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Supplemental Material, Figure S3 shows estimated regression and variance 

parameters for the long-term mean, the temporal trend coefficient, and spatio-temporal 

residuals, whereas Figure S4 displays loadings of geographic variables for each PLS 

predictor. Regression coefficients of the two PLS predictors for both the long-term mean and 

trend coefficient were statistically significantly different from 0, reflecting that spatial 

variation in the long-term mean and temporal trend is explainable by the geographic variables 

used to create the PLS predictors. Significant range and partial sill parameters for the long-

term mean show an additional important contribution of the spatial correlation structure to the 

long-term mean. Contribution of the temporal trend to cross-validated predictions was 

smaller than the long-term mean (Supplemental Material, Table S4). 

Tables 2 and 3 show the external validation statistics for the pre-1999 period using 

IMPROVE data and the CHS, CARB dichot, and IPN data, respectively. Using IMPROVE 

data, the R2s were consistently high for all years and each year separately (0.70-0.91) across 

the three trend estimation approaches (Table 2, Figure 3). The R2s were slightly higher for the 

model using the extrapolated linear trend based on PM2.5 data than estimated trends from 

PM2.5 sulfate and visibility data. In addition, the earliest years (1990 and 1991) gave lower 

R2s (0.70-0.85) than the other years (0.83-0.93). The East region produced higher R2s (0.67-

0.88) than the Mountain West region. When the model was validated using the CHS data, the 

R2s were also generally high (0.71-0.90) (Table 3, Supplemental Material, Figure S5). CARB 

dichot data gave high R2s over 0.5 except for some years, whereas IPN data consistently 

showed low R2s (Table 3, Supplemental Material, Figures S6-S7). Variability of predicted 

PM2.5 annual average concentrations tended to be smaller than the observations with slopes 

less than 1 in regressions on observations (Supplemental Material, Tables S5-S6). 

Supplemental Material, Figures S8 and S9 show that the differences between maximum and 

minimum of predicted PM2.5 annual averages across three trend estimation approaches over 
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years at IMPROVE sites. Median differences were small and mostly less than 2 ug/m3. In 

addition, the differences were larger in early years than recent years, indicating increasing 

prediction uncertainty of trend estimation in early years. 

Figure 4 shows predicted PM2.5 concentrations dramatically decreased across 

decennial years from 1980 through 2010 with only a few areas that remained consistently 

high in the continental U.S. over all three decades. The decreasing trend was also clear over 

31 years across the 10 most populated grid coordinates in each region (data not shown). 

Thirty-one year, residence-weighted average PM2.5 predictions for MESA Air participants 

were generally higher than the corresponding annual averages at their residence in 2000 

(Figure 5 and Supplemental Material, Figure S10). The two sets of predictions showed high 

correlations with 2000 annual averages (0.86-0.89) with slightly lower correlation and the 

slope more attenuated for movers than for non-movers. 

DISCUSSION 

 We developed a 31-year prediction model to estimate fine-scale ambient PM2.5 

concentrations in the continental U.S., including the time period prior to 1999 when extensive 

monitoring data became available. Key aspects of our approach to historical (pre-1999) 

prediction were our consideration of various trend estimation approaches and our model 

validation with multiple external validation datasets. While the prediction model performed 

well for 1999-2010 as assessed by cross-validation, the pre-1999 external validation is a more 

important indicator for evaluating historical predictions. We found the pre-1999 predictions 

also generally performed well across three trend estimation approaches, particularly for the 

external IMPROVE and CHS data. The model performance was better in the more highly 

populated East region. Twenty one-year average PM2.5 concentrations for 1980-2000 at 

MESA/MESA Air participant residences tended to be higher than and somewhat 
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unsystematically different from annual averages in 2000, though the correlation was higher 

among those with stable residence locations.  

 Developing a prediction model for estimating long-term PM2.5 concentrations for the 

time period when there is little available PM2.5 monitoring data requires using external 

information to estimate a temporal trend. Our three approaches for trend estimation gave 

consistently good model performance as assessed by R2s, with a slight edge to the linearly 

extrapolated trend for predictions before 1990. This could be because the three trends we 

considered, while based on three different data sources, all showed similarly decreasing 

patterns with only slightly different shapes. We considered PM2.5 sulfate data useful for trend 

estimation as a large reduction of PM2.5 in 1990s and early 2000s was likely to be due to a 

large reduction of sulfate, particularly in the East region (Malm et al. 2002; U.S. EPA 2003). 

The non-linear decrease of the estimated trend from PM2.5 sulfate data could be due to the 

timing of implementation of policies regulating sulfur dioxide emissions (Xing et al. 2013). 

The decreasing trend of annual sulfur dioxide emissions from power plants matches well with 

that of sulfate concentrations in the eastern half of the U.S. between 1990 and 2003 (U.S. 

EPA 2004b). The CASTNet sites were located mostly in rural areas which may not represent 

PM2.5 concentrations from urban sources or affecting population centers. However, as sulfate 

is an important regional pollutant that exhibits homogenous concentrations on a large spatial 

scale due to long-range transport, the rural sites still allow us to assess large regional trends 

over time as intended by the CASTNet monitoring design. The trend estimated from the 

visibility data demonstrated a somewhat different shape from that of the PM2.5 sulfate trend, 

which could possibly be driven by meteorological influence (Hand et al. 2014). In addition to 

a non-linear relationship between PM2.5 concentrations and visibility depending on chemical 

composition and weather conditions, the change of sampling methods for visibility from the 

more subjective human eye to the more objective optical instruments beginning in 1992 
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(Hyslop et al. 2009; U.S. EPA 2005) coincides with the observed state of a marked 

downward trend.  

Our historical model was based on a spatio-temporal framework using annual 

averages of PM2.5 concentrations for multiple years. Other studies in Europe and Canada 

predicted annual averages of NO2, NOX, and PM2.5 by back-extrapolation (Beelen et al. 2014; 

Chen et al. 2010; Gulliver et al. 2013; Meng et al. 2015). The back-extrapolation approach 

computed the difference of spatial averages between the two time periods or the ratio of a 

short-term average to an annual average based on a few fixed site measurements and then 

added to or multiplied by predictions in recent years in order to obtain estimates in early 

years. In contrast with the back-extrapolation approach, our spatio-temporal approach allows 

prediction for an extended time period when there are no measurements.  

Like other authors, we considered various alternative approaches to historical 

prediction. Most previous studies used ratios of PM2.5 to PM10 to leverage PM10 data 

collected before PM2.5 monitoring began, as opposed to our approach directly using PM2.5 

along with an estimated temporal trend. Some U.S. investigators developed ratio models that 

predict monthly averages of PM2.5 concentrations for 1988-1998 by multiplying the ratios by 

PM10 for Nurse’s Health Study participants residing in Northeastern and Midwestern regions 

(Paciorek et al. 2009; Yanosky et al. 2009) and expanded to the continental U.S. (Yanosky et 

al. 2014). In Taipei, Taiwan, another study developed a ratio model for predicting historical 

monthly averages of PM2.5 (Yu et al. 2010). In separate analyses to mimic this approach, we 

also applied our model to annual average ratios. Our cross-validated R2s were high between 

1999 and 2010 (R2=0.84-0.90) consistent with those in our original model. However, R2s in 

the out-of-sample validation using IMPROVE data were lower, particularly in early years 

such as 1990 and 1991 (R2=0.13 and 0). This poor model performance could be due to 

relatively poor prediction performance of PM10 rather than PM2.5. A spatio-temporal 
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prediction model for PM10 annual averages in the continental U.S. achieved a cross-validated 

R2 of 0.55 (Hart et al. 2009), much lower than the cross-validated R2 of 0.88 in a spatial 

prediction model for PM2.5 annual averages in 2000 (Sampson et al. 2013). It is also possible 

that temporal and spatial patterns of PM10 vary rather differently from those of PM2.5.  

In addition to ratios, we also explored modeling approaches that incorporated 

visibility or meteorology to predict historical PM2.5 concentrations. A group of studies used 

the extinction coefficient, the inverse visual range multiplied by a constant, solely or jointly 

with PM2.5 and PM10 data based on their high correlation with PM2.5 concentrations 

(Ozkaynak et al. 1985; Paciorek et al. 2009; Yanosky et al. 2009). The good model 

performance using the visibility trend in our model confirms the usefulness of visibility data 

for predicting PM2.5. However, our results showed slightly better model performance using 

PM2.5 data than visibility data when validated on the national scale using IMPROVE data. 

We examined our models after adding meteorological measurements as spatio-temporal 

covariates and found worse model performance than our preferred approach.  

We evaluated our historical prediction model using four available external validation 

datasets; together these covered 13 years of the 19 year period for 1980-1998 in much of the 

United States. Previous studies for historical PM2.5 prediction models either presented cross-

validated results using data before 1999 but without any external validation datasets 

(Paciorek et al. 2009; Yanosky et al. 2009; Yanosky et al. 2014), or reported external 

validation results based on a limited dataset for a short time period (Hogrefe et al. 2009; Lall 

et al. 2004; Ozkaynak et al. 1985; Yu et al. 2010). Our model performed particularly well 

when evaluated against IMPROVE and CHS data. One strength of using the IMPROVE data 

as a validation dataset is that it is national. It gave the highest R2s among all external 

validation datasets, possibly due to its advantage of validating for the 1990-1998 time period 

when the estimated trend is less uncertain.  
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We also observed consistently high R2s when validating against the data in CHS 

which deployed monitoring sites in urban and residential areas. All CHS monitoring sites 

were in Southern California and thus may not be generalizable across the U.S.. The CARB 

dichot data, also restricted to California locations, gave lower R2s, including values less than 

0.5 for some years. These low R2 estimates could be caused by the lower between-site 

variability in California (vs. the entire U.S.) as well as the small number of sites, a few of 

which had poor predictions. Another possible reason for this poor performance is that the 

CARB dichot network used a different sampling protocol than FRM. Our simplified data-

driven calibration method may not have performed well compared to an approach 

incorporating site-specific meteorological conditions (Blanchard et al. 2011). Model 

performance could have also been impacted by a set of CARB dichot sites in the highest 

PM2.5 concentration areas (Figure 4). The IPN data gave the lowest R2s overall, possibly 

driven by the limited amount of IPN sites and the inconsistency of the IPN sampling protocol 

with that of FRM. With 6 and 12 sites for 1980 and 1981, respectively, a few sites with poor 

predictions had a large impact on the R2 estimates. Furthermore, the IPN years of 1980-1981 

are the earliest years of our prediction period and may reflect the most uncertainty in trend 

estimation.  

 This study includes some limitations and implications for future research. We used 

time-constant geographic variables which do not account for changes in spatial characteristics 

over time. However, among the approximately 300 geographic variables that we used for 

estimating PLS predictors were two sources of land use data: land cover data created in 1970s 

and 1980s and satellite land use imaginary data generated in 2007. These two data 

representing spatial differences in land use on two different time periods about 30 years apart, 

and our modeling of the temporal trend with these covariates incorporated gave us the ability 

to capture changes of land use features over time in our model. In addition, a study in 
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Vancouver, Canada, found the model performance for predicting NO and NO2 in 2003 was 

consistent with geographic variables collected between 2003 and 2010 (Wang et al. 2013). 

Although this time period is only 7 years and much shorter than our 31 years, these findings 

suggest that spatial patterns in urban areas with stable physical environments can be 

characterized by geographic variables from one of many time periods. Some previous studies 

have used aerosol optical depth (AOD) data to improve prediction models for PM2.5 

(Beckerman et al. 2013; Hystad et al. 2012; Kloog et al. 2011). These models used short-term 

or long-term averages of AOD. Future studies should investigate how to incorporate AOD 

measurements into spatio-temporal prediction models for extended time periods and whether 

the addition of AOD improves the model performance. 

As with application of any predicted exposure to health analyses, using predicted 

PM2.5 concentrations from our historical prediction model may impact the estimates in 

subsequent health analyses due to exposure measurement error. As others have shown, we 

note that the high R2s we obtained do not guarantee the accuracy or proper coverage of health 

effect estimates due to Berkson- and classical-like measurement error (Szpiro 2011a). Several 

simulation studies have shown that well-performing exposure models can still produce biased 

and/or imprecise health effect estimates (Alexeeff et al. 2014; Szipro et al. 2011b). One 

possible explanation for this feature is that the monitor locations do not represent the study 

population locations, resulting in monitored exposures spatially non-compatible with 

population’s exposures (Szpiro & Paciorek 2013). 

Our results suggest the importance of incorporating changes in air pollution 

concentrations in cohort studies. We showed that long-term PM2.5 prediction averages for 31 

years incorporating mobility were systematically higher than 2000 predictions among non-

movers and were non-systematically different in movers. This pattern varied by cities, as 

suggested by the Supplemental Material, Figure S10, possibly depending on the extent of 
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exposure contrast and the population’s mobility between low and high exposure areas within 

a city. Using exposure predictions from a later period of follow-up in epidemiological study, 

as commonly done (Beelen et al. 2008; Cesaroni et al. 2013), may not adequately represent 

long-term exposures and might impact health effect findings.  

CONCLUSIONS 

Our 31-year national PM2.5 prediction model can be widely applicable to 

epidemiological studies, particularly for assessing the association of long-term air pollution 

exposure and health outcomes in cohort studies. While there remains unavoidable uncertainty 

about the quality of the predictions for the earliest time periods, the overall strong 

performance of our model assures that we can provide good PM2.5 estimates that are 

temporally well aligned with health data, including health outcomes collected before 

extensive monitoring data exist. In addition, application of this point-wise prediction model 

will allow estimation of individual-level concentrations across historical addresses over time 

and thus will improve assessment of the impact of air pollution on progression of disease 

conditions over the life course. Our findings also suggest that long-term average PM2.5 

estimates obtained from single addresses or restricted time periods after health observation 

may not accurately represent long-term average estimates of some people, and could impact 

subsequent health analyses.   
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Table 1. Summary of PM2.5 monitoring data used for PM2.5 historical model development and validation 
Networka Spatial coverage Regulatory  Number  Number of Sampling Annual average of PM2.5 (µg/m3) 

  monitoring network of sitesb observationsb periodb Mean SD 

FRM National  
(urban) Yes 1,282 9,233 1999-2010 12.03 3.23 

IMPROVE National 
(rural) Yes 

178 1,567 1999-2010 5.44 2.94 

72 423 1990-1998 6.05 3.75 

CASTNet National  
(rural) Yes 108 1,485 1987-2010 3.15 1.91 

IPN National  
(urban/rural) Yes 16 18 1980-1981 21.31 6.69 

CARB dichot California  
(urban/rural) Yes 33 247 1988-2001 19.35 7.78 

CHS Southern California  
(urban) No 13 120 1994-2003 16.12 8.17 

a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; IPN = Inhalable Particulate Network; CARB dichot = California Air Resources Board dichotomous sampler monitoring; 
CHS = Children’s Health Study 
b. Number of sites, number of observations, and sampling period for the monitoring sites that meet the minimum inclusion criteria for 
computing representative annual averages 
 
  



Environ Health Perspect DOI: 10.1289/EHP131 
Advance Publication: Not Copyedited 

 

25 
 

Table 2. External validation statistics of the historical PM2.5 models using PM2.5 IMPROVE data for 1990-1998 by year and region 
Estimated trend FRM/IMPROVEa PM2.5 CASTNeta PM2.5 sulfate WBANa visibility 
Validation statistics R2 RMSE (µg/m3) R2 RMSE (µg/m3) R2 RMSE (µg/m3) 

Year/region Nb             
Allc 72 (423) 0.91 1.14 0.84 1.49 0.86 1.41 
1990 30 0.85 1.04 0.78 1.26 0.70 1.48 
1991 36 0.83 1.40 0.78 1.56 0.70 1.84 
1992 37 0.91 1.19 0.84 1.59 0.85 1.57 
1993 45 0.92 1.20 0.83 1.76 0.87 1.53 
1994 50 0.92 1.03 0.84 1.45 0.89 1.20 
1995 58 0.91 1.15 0.86 1.41 0.86 1.40 
1996 56 0.93 0.93 0.88 1.26 0.91 1.10 
1997 57 0.93 1.01 0.86 1.42 0.90 1.21 
1998 54 0.90 1.28 0.83 1.70 0.87 1.46 
Eastc 21 (120) 0.88 1.27 0.67 2.10 0.84 1.45 

Mountain Westc 34 (202) 0.25 0.93 0.04 1.06 0.00 1.39 
West Coastc 17 (101) 0.69 1.33 0.67 1.37 0.66 1.39 

a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; WBAN = Weather-Bureau-Army-Navy 
b. Number of sites (Number of observations when different from the number of sites) 
c. Annual averages from 1990 through 1998 
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Table 3. External validation statistics of the historical PM2.5 models using CHS, CARB dichot, and IPN data by year 
  Estimated trend FRM/IMPROVEa PM2.5 CASTNeta PM2.5 sulfate WBANa visibility 

 
Validation statistics R2 RMSE (µg/m3) R2 RMSE (µg/m3) R2 RMSE (µg/m3) 

Validation dataa Year Nb             
CHS Allc 13 (120) 0.76 4.00 0.76 3.98 0.81 3.59 

 
1994 12 0.71 5.19 0.69 5.34 0.80 4.33 

 
1995 12 0.66 5.97 0.63 6.31 0.75 5.17 

 
1996 12 0.77 4.40 0.75 4.56 0.82 3.86 

 
1997 12 0.83 3.12 0.84 3.01 0.88 2.64 

 
1998 12 0.83 2.87 0.87 2.55 0.87 2.54 

 
1999 12 0.73 4.30 0.75 4.13 0.74 4.16 

 
2000 12 0.80 3.43 0.82 3.24 0.82 3.31 

 
2001 12 0.82 3.79 0.85 3.44 0.86 3.27 

 
2002 12 0.81 3.20 0.82 3.12 0.79 3.31 

 
2003 12 0.88 2.39 0.90 2.22 0.89 2.30 

CARB dichot Allc 33 (162) 0.55 5.54 0.48 5.98 0.61 5.17 

 
1988 8 0.09 9.70 0.00 10.52 0.15 9.40 

 
1989 12 0.25 9.07 0.10 9.94 0.33 8.55 

 
1990 11 0.68 4.77 0.53 5.74 0.76 4.08 

 
1991 12 0.31 9.24 0.16 10.16 0.43 8.35 

 
1992 14 0.51 5.35 0.40 5.91 0.63 4.68 

 
1993 15 0.54 3.88 0.33 4.67 0.66 3.30 

 
1994 13 0.77 4.08 0.69 4.72 0.84 3.37 

 
1995 12 0.71 3.46 0.63 3.91 0.70 3.54 

 
1996 15 0.52 4.00 0.66 3.37 0.57 3.81 

 
1997 15 0.41 3.19 0.59 2.66 0.45 3.08 

 
1998 16 0.31 4.11 0.37 3.94 0.30 4.14 

 
1999 12 0.85 2.39 0.84 2.50 0.82 2.64 
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2000 6 0.53 2.41 0.46 2.59 0.41 2.69 

  2001 3 0.00 9.41 0.00 9.34 0.00 9.19 
IPN Allc 16 (18) 0.16 6.15 0.02 6.63 0.00 7.40 

 
1980 6 0.40 5.11 0.27 5.62 0.00 6.96 

  1981 12 0.11 6.61 0.00 7.09 0.00 7.61 
a. FRM = Federal Reference Method; IMPROVE = Interagency Monitoring of Protected Visual Environment; CASTNet = Clean Air Status 
and Trends Network; WBAN = Weather-Bureau-Army-Navy; CHS = Children’s Health Study; CARB dichot = California Air Resources 
Board dichotomous sampler monitoring; IPN = Inhalable Particulate Network 
b. Number of sites (Number of observations when different from the number of sites) 
c. Annual averages from 1990 through 1998 
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FIGURE LEGENDS 

 

Figure 1. Maps of A) FRM and IMPROVE sites for 1999-2010 used in model development 

and trend estimation, B) CASTNet and WBAN sites used for trend estimation, and C) 

IMPROVE sites for 1990-1998, CHS, CARB dichot, and IPN sites used in model evaluation 

(blue, green, and red circles represent West, Mountain West, and East regions); Maps 

generated using locations of regulatory monitoring sites downloaded from the EPA website 

(http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily) and boundaries in 

the R package 

 

Figure 2. Estimated temporal trends based on PM2.5 annual averages in FRM and IMPROVE, 

PM2.5 sulfate annual averages in CASTNet, and visibility annual averages in WBAN 

 

Figure 3. Scatter plots of observed and predicted PM2.5 annual averages from the PM2.5 

historical model using the FRM/IMPROVE PM2.5 trend across IMPROVE sites for 1990-

1998 

 

Figure 4. Predicted PM2.5 annual averages in 1980, 1990, 2000, and 2010 from the 31-year 

PM2.5 model using the extrapolated temporal trend based on PM2.5 data for 1999-2010; Maps 

generated using model outputs discussed in the “Development of the PM2.5 model for 1980-

2010” of the “Methods” section and boundaries obtained from the U.S. census 

 

Figure 5. Scatter plots of predicted PM2.5 annual averages from the 31-year PM2.5 model 

using the extrapolated temporal trend based on PM2.5 data for 1999-2010 for 2000 vs. long-

term averages for 1980-2000 weighted by times of residences across home addresses of 5,086 
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participants who never moved for 1980-2000 and 2,466 MESA/MESA Air participants who 

moved at least once  
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Figure 1. 
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Figure 2. 
 

 
  

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

1980 1985 1990 1995 2000 2005 2010

−2
−1

0
1

2

FRM & IMPROVE PM2.5

Year

Sc
al

ed
 te

m
po

ra
l t

re
nd

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●● ●● ●● ●● ●● ●● ●● ●● ●●

●●
●●

●●

●●

●●

●●

●●

1980 1985 1990 1995 2000 2005 2010

−2
−1

0
1

2

CASTNET PM2.5 sulfate

Year

Sc
al

ed
 te

m
po

ra
l t

re
nd

●●
●● ●● ●●

●●
●●

●● ●● ●● ●● ●● ●●
●●

●●

●●

●●

●●

●●
●●

●●
●● ●● ●● ●●

●●
●●

●●

●●

●●

●●
●●

1980 1985 1990 1995 2000 2005 2010

−2
−1

0
1

2

WBAN visibility

Year

Sc
al

ed
 te

m
po

ra
l t

re
nd



Environ Health Perspect DOI: 10.1289/EHP131 
Advance Publication: Not Copyedited 

32 

Figure 3. 
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Figure 4. 
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Figure 5. 
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